
Non-text Files, Reading and Writing Objects
Work on Spellchecker Project

Turn in last written problems now.
Mini-project is due at the beginning of Day 30 class (no late days)
◦ Just before your presentation, we will randomly choose which of your team

members will present, so everyone should be prepared to do it.
◦ Commit an outline of your presentation to your team repository by beginning of

class on Thursday.
◦ You will use my machine for the demo (to help keep transition time down), so

make sure your repository is populated by 7am on Friday
◦ There will be time in class to work with your team today and tomorrow.

Do not miss it!

Questions?

Today:
◦ Random access files and serialization
◦ Work on Spellchecker

Note: If you like looking at sorting code and animations, there are yet more
at:

http://www.brian-borowski.com/Sorting/

I will provide some class time on Thursday for
filling out the evaluation forms
I recommend that you wait until then to do
them, so you'll be able to comment on the
full course, including your project experience.

Back In the Day [TM]
◦ I/O only involved a few possible

sources/destinations
◦ terminal, printer, card reader, hard disk
◦ Typically there were separate sets of functions for

each type of source or destination.
Now there are many more
sources/destinations
◦ including network locations.
◦ and we recognize that most of the I/O functions

are common to all sources/destinations
In order to make all I/O more flexible and
adaptable in Java, simple I/O is more
complex than in some other languages.

What is a Stream?
◦ An abstract representation of information flow that is

independent of the source and/or destination.
A stream is One-Way
◦ Either an Input Stream or an Output Stream
InputStream
◦ Subclasses include FileInputStream, ObjectInputStream,

AudioInputStream.
◦ A socket has a getInputStream method that lets us get info

from a network connection.
◦ System.in is an InputStream
OutputStream
◦ Subclasses include FileOutputStream, ObjectOutputStream.
◦ A PrintStream is a specialized OutputStream with

characteristics suitable for standard output.
◦ System.out is a PrintStream.

Three pre-defined streams
◦ System.in (an InputStream)
◦ System.out (a PrintStream)
◦ System.err (a PrintStream)
Streams are byte-oriented.
They read or write bytes or arrays of bytes.
Readers and Writers are character-oriented, they
read or write characters or arrays of characters.
Examples of Reader classes:
◦ InputStreamReader, BufferedReader, FileReader,

PushBackReader, StringReader.
Examples of Writer classes:
◦ OutputStreamWriter, PrintWriter, BufferedWriter,

StringWriter

Line-at-a-time input from the standard input stream System.in

in

System

An InputStream (type depends on environment)

InputStreamReader

HAS-A

in

BufferedReader

A BufferedReader makes it easy to read
a stream one line at a time. Each call to
readline returns a String containing the
next input line (without the end-of-line
character).

I/O to/from files using a BufferedReader and a PrintWriter.

Typical use of readline to process input

Note that FileReader and FileWriter
have constructors that take a
filename, so we don't need the
intermediate step of constructing an
FileInputStream directly.

This is from Weiss, page 57

Can you see what is not so good about the
code on the previous slide?

What should we do instead?

System.getProperty("line.separator");

We'd like to be able to write objects to a file,
then read them back in later.
Java (transparently to the user) writes type
information along with the data.
Reading the object in will recover its type
information.

Objects can contain references to other
objects.
◦ Writing out the actual reference (a memory address)

would be meaningless when we try to read it back
in.

Several objects might have references to the
same object.
◦ We do not want to write out several copies of that

object to the file.
◦ If we did, we might read them back in as if they

were different objects.

The objects that we write/read must implement
the Serializable interface (which has no
methods).
Objects are written to an ObjectOutputStream.
An example should help you see how it works.

1. Paint, with drawings you can save, then
clear, then load, and undo.

Clearly not using images.

2. A savings account example

3. Why the Paint demo works

class Person implements Serializable{
private String name;
public Person (String name) {

this.name=name; }
}

class Account implements Serializable {
private Person holder;
private double balance;
public Account(Person p, double amount) {
holder=p;
balance=amount;

}
}

class SavingsAccount extends Account implements Serializable {
private double rate;
public SavingsAccount(Person p, double amount, double r) {
super(p,amount);
rate=r;

}

Note that an Account
HAS-A Person

In addition to writeObject(), the
ObjectOutputStream class provides methods for
writing primitives, such as writeDouble() and
writeInt(). writeObject() calls these when needed.

public static void main(String [] args) {
try {
Person fred = new Person("Fred");
Account general = new Account(fred, 110.0);
Account savings = new SavingsAccount(fred, 500.0, 6.0);

ObjectOutputStream oos = new ObjectOutputStream(
new FileOutputStream("Objects.dat"));

oos.writeObject(general);
oos.writeObject(savings);
oos.close();

We must read the objects in the same order
as they were written.
Both objects that are read are assigned to
variables of the type Account, even though
one should have been written out as a
SavingsAccount.
We will check to make sure it was read
correctly.

ObjectInputStream ois =
new ObjectInputStream(

new FileInputStream("Objects.dat"));
Account aGeneral = (Account)ois.readObject();
Account aSavings = (Account)ois.readObject();

if (aGeneral instanceof SavingsAccount)
System.out.println("aGeneral is a SavingsAccount");

else if (aGeneral instanceof Account)
System.out.println("aGeneral is an Account");

if (aSavings instanceof SavingsAccount)
System.out.println("aSavings is a SavingsAccount");

else if (aSavings instanceof Account)
System.out.println("aSavings is an Account");

if (aGeneral.holder == aSavings.holder)
System.out.println("The account holder, fred, is shared");

else
System.out.println("Account holder, fred, was duplicated");

ois.close();
}catch (IOException ioe) {

ioe.printStackTrace();
}catch (ClassNotFoundException cnfe) {

cnfe.printStackTrace();
}

Output:
aGeneral is an Account
aSavings is a SavingsAccount
The account holder, fred, is shared

>ls -l bin.bin text.txt
a----- 80 8-Feb-108 13:50 bin.bin
a----- 211 8-Feb-108 13:50 text.txt
UNIX output format is more
compact than MSDOS.

What is the difference between the
effects of these two statements?

import java.io.*;
public class RandomAccess {

public static void main(String [] args) {
try {
RandomAccessFile raf = new RandomAccessFile("random.dat", "rw");
for (int i=0; i<10; i++)
raf.writeInt(i);

raf.seek(20);
int number = raf.readInt();
System.out.println("The number starting at byte 20 is " + number);
raf.seek(4);
number = raf.readInt();
System.out.println("The number starting at byte 4 is " + number);
raf.seek(5);
number = raf.readInt();
System.out.println("The number starting at byte 5 is " + number);

raf.close();
}catch (IOException e) {

e.printStackTrace();
}
}

}

Streams provide easy sequential access to a file, but sometimes you want to have
random access; for example a database program certainly needs to be able to go
directly to a particular location in the file.

This example is adapted from Art Gittleman,
Advanced Java:Internet Programming, page 16

writeInt ?

Note that we are reading and writing numbers in their
internal (binary) representation, not in their text
(human-readable) representation.

